Pseudo-partial likelihood estimators for the Cox regression model with missing covariates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cox Regression for Current Status Data with Missing Covariates

Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are not yet investigated. Our study is partly motivated by analysis of fracture data from a cross-sectional study, where the ocurrence time of fracture was interval-censored and...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Posterior Propriety and Computation for the Cox Regression Model with Applications to Missing Covariates

In this paper, we carry out an in-depth theoretical investigation for Bayesian inference for the Cox regression model (Cox, 1972, 1975). Specifically, we establish establish necessary and sufficient conditions for posterior propriety of the regression coefficients, β, in Cox’s partial likelihood, which can be obtained as the limiting marginal posterior distribution of β through the specificatio...

متن کامل

A pseudo-Bayesian shrinkage approach to regression with missing covariates.

We consider the linear regression of outcome Y on regressors W and Z with some values of W missing, when our main interest is the effect of Z on Y, controlling for W. Three common approaches to regression with missing covariates are (i) complete-case analysis (CC), which discards the incomplete cases, and (ii) ignorable likelihood methods, which base inference on the likelihood based on the obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2009

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asp027